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ABSTRACT

In this paper we study conditions-that ensure existence and uniqueness

of solution to the initial value problem for the nonlinear Schrodinger

equation. Many known results in tbe one dimensional space are extended to the

higher dimensional cases. We also establish bounds and investigate decay

properties for the solution.
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SIGNIFICANCE AND EXPLANATION

The initial value problem for the nonlinear Schr3dinger equation has

important applications in physics and engineering. In this paper we study

sufficient conditions for this problem to have a unique solution, we further

establish bounds for the solution and also investigate its decay properties.
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ON THE INITIAL VALUE PROBLEM FOR A NONLINEAR SCHRODINGER EQUATION

Guang-Chang Dong and ShuJie Li

1. Introduction

Consider the following initial value problem for the nonlinear Schradinger

equation

iut + Au = F(u) , (1)

uIt=0 = O(x) (2)

n a

where x (xlx2 .... Xn) , A = n a and F(u) is a complex-valued function of
j1ax

2

two real variables Reu, Imu.

For the case n = 1 and u E R, it is shown in [1] that if for sufficiently

small u and tor p > 4, the function F satisfies the condition

F(u) =O(Julp) (3

and if and its derivatives up to some order are also sufficiently small then

the problem has a unique solution. Furthermore, the solution u is as smooth as

and F allow and is bounded in the L2  and L norms. More specifically,

we have

ou(t). < K(1 + t) /2 (4)

where K is a constant.

It is also shown by Klainerman (2] that if F satisfies (3) with

p > 2 + /3, a solution to Equations (1) and (2) still exists and is unique.

But, in this case the order of (1 + t) in (4) is a small negative number.
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In this paper we show that the same results established in (1,21 are still

true when the number p in (3) satisfies p > (3 + iT1)/2. Furthermore, we show

that if

+ i + /1 3 1 n+52
2 n 4 n n-2

n

the above results hold also for the higher dimensional cases (n = 2,3,...).

We note here that the problem has been widely studied for the special case

that

F(u) = f(lul)u (6)

where f is a real-valued function, [see, for example, 3, 41. Condition (5) is

used in [4] to ensure a decay property for the solution.

In the sequel we use PlHl to denote Lp-norm and use KIK 2 ,..., to denotep

positive constants.

I
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2. Results

Theorem 1. Suppose that p satisfies (5), F(u) 4 C satisfies (3) and

F'(u) = O(JuIP- 1 ) . (7)

If there exists an n > 0 sufficiently small such that for 1 < k ( + 1,

2 2110111 , F l1r)koil 2 < n < 1 8

then (1) and (2) has a unique weak solution u(x,t) E C(L2 (R),R+) satisfying (2)

and for each v with

VvtD2v E C(L 2(R),R 
+ ) , (9)

the solution u satisfies

t t

i(u(s),v(s))s
= t + J (u(s),iv + Av)ds = f (F(u),v(s))ds • (10)

0 0

Moreover, there exist positive constants K1 ,K2 ,K3 and K4  such that

u (t )ll 2  < K ,111

'I n(p-1)

llu(t)lp+I < K (1 + t) 2(p+l) (12)
pl 2

for n = 1

I~~tII-min (., p-3
l(u(t)l 4 K3(1 + t) , (13)

for n ) 2, 0 < £ < I - n(p- 1)
2(p + 1) '

-min(,n( pn 1))
lu(t)ll 2n K 4 (1 + t) n+2-2. (14)

n-2+2E

When the two terms of the minimum expression are eual, we must multiply by

the factor log(1 + t) in the right hand side. We meet the similar situation
in the following formulas (32), (33), (61), and (62).

-3-
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Proof: Find a solution w of

iW + tiw -0 (15)

with the initial condition

W(O) -*.(16)

Let u -) w. Construct a sequence of functions u(m), (m -0,1,2,...)

(i ) + &u(m) - (17)M

u()(0)-

If we can prove that u~m) converges, say u (m) + u (m + -), then u is a

solution of (1) and (2). Write V, W to denote u(m-l) , U Cm) - w, then (17) is

reduced to

iW t+ AW -F(V)

W(O) -0

We proceed to derive some estimates for the solution of (15), (16) and then

for the solution of (17). Then we will prove that u(m) is convergent.

h When * E L 1R) and Dk iE L (10), we write the solution of (15), (16) in

the form

n 2
2 -1 (19)~

w(x,t) =(4irit) f exp(J' 4± )*(y)dy R(t) (9

Hence

IWWtI UKt)) 1 , (20)
2 t)I 2  2

1v(t)I. E *R~t) N. 4 (4irt) 2 1 1 1. (21)

By the Riesz-Thorin interpolation theorem [5) we have

-4-



n.n n n

iw(t) -q IR(t)Oiq 4 (4irt)q 2 001 4 K5tq 2 (I1€NI + U01 2 (22)

where q > 2, -+--= 1.
q -

q
we also have

RD kw 2 = AD . (23)

2 012

From (20), (22), (23) and elementary inequality

Iwo 4 owl. q  Iwo q4 (K6,,wo2+ KT k w12 q Iwo q,

q 2 6 2 7~ x2 2'

we have

lllwilq,t 4 K8 (fltI1 + flfl2 + HDkolI2 ) ( K9(IIOI + flDkol 2 ) (24)

where qI II denotes the normq,t

n n

IIwil = sup [(1 + t)2  q iwli .

Similarly, we have that

ill1D wjiit I 11Dfl1 + UD+1 (25)
x q't 10 12

IIIDxWlllqt 4 Kl 11 (D
201 1 + IIDk + 2 ) . (26)

Now we estimate the solution of (18). The solution W can be written in the

form

t
W(t) f f R(t - s)F(V(s))ds . (27)

0

It follows from (3), (22), (27) that

-5-
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tn n

HW(t)II ( K -1 (t - )p+1 2 NIV(SiPU

0 ~1+ -

t n n

K (12 f (t 8) p)I 2 IV~s)IIP ds
0 P+l

t -(-1 np(P-1)

K IiivlllP f t - 8) 2(+)( 8 (+)d
13 p+1 ,t 0 (

Since npp > 1 and n~ )< 1 by (5), hence we have
2p+ 1) 2(p + 1)

p+l,t 4 14 p+1,t

Multiplying (18) by 2T7 and integrating, we get

2 t V x - 2 I W s Hd
I 2 2mf ds f WFVd (2fII I) IF(V(s))I 1a

0 N 04 1+1P

4 K1 1II 2pvl~itt (I + S) 2 ds

Hence

Similarly, we have

'1W(t+6t) I =0(11 olivili l-1  ) IIIV(t+6t) -V(t) IIIPltP4-1,t P+1,t
i~1L~ 4-1,t(30)

1IIW(t+6t) -W(t)l1l = 0(IIIVllI2p-2 )IIIV(t+6) -V(t)I11l

2 t p+1,t p+1,t
(31)

+ O(6t)IIIVII 2 p

t +f



When n = 1, (27) implies that

t -

II~~l, K 17 f (t - S) p.4-i)I d
0

1 (p-2)(p+1) -

(K ilivillP- f1VII p (t - S) 2(1 + S) 2ds

K2 i ~~ 12 li (P-2) (,+1) (1 -t3~ (32)

When n > 2 and 0 < e < 1 - n(p it1 also follows from (27) that
2p+ 1)'

t 
1

IIW(t) II CK r (t-s) fFV s )Ia
2n 21 fI(~)f 2n d

0
n-2+2c n+ 2-2 e

t 1 2 o+2 - n+'2 2 -~(p 1)
K (t-S) 1i II~)IP1 n22 I(s)II p1n+2-2c ds

422 f2 p+l
0

-(2p+2- n-E 2 P~L1( pn _1

K IIVIIP-' +2-c jjV(, jjj p-i n+2-2c
23 2,t iivsfl+It

f (t-s) c-(1+,) n+-c ds

-L-j(2p+2- n2 9
1  2 P±-'( 2n* _1)'ilv2c1l1Vi p-i n+2-2c

24 2,tP+1't(33)

Changing V and W to their original notation u(M-I), U~m- w in (28)

respectively, we have(i)-wl

ill" (m W1 K 4 Illu M111p(4

-7-t14P+1



Hence it follows that

SIllu (m) lltp+l, t  4 Illilll l t  + K141 tu (M-1)flip+1t (35)

If Illwll p+l, t  is so small that the followinq inequality holds
1

K (21Iwl ( , (36)I K~14(2lwlp+1t 2 16

then we prove by induction that

(illu(m) llp+,t (2 - i)I 2 llwtltp~l,t' (n = 0,1,2...) . (37)

The inequality (37) is true for m - 0 because u( ) = w. Assume that (37) is

true for m, by (35), (36), (37) we have
Ilu M l)( t lwl l1 illu (m) IllI  (2 - )Illwlrl

up+l,t w p+,t p+,t 2 m+1 p+l,t

Hence (37) is true for m = 0,1,2,... . Therefore we have

Illu(m) Illp+l,t < 2111wlll +I,t ,  (n = 0,1,2,...) ( (38)

Then

n n

Ilu(m+l)u(m) i iIl = SUp{(+t) 2  p+1 Of R(t-s)[F(u(m) )-F(u (m-1) )]dslIP+l1
t>O 0

n n n n

K supI(l+t)2 p+l f (t-s)p+1 II(u - u )F'(w + eu ( m )

t>0 0

+ (l-e)u(m-1)) 1 ds, (0 < e < 1)
1+-

p

K 26 11wll , lllu(m) - u(m-1) Ill (39)

Let Ilw!ll l be sufficiently small such that

K26i11willp+1, < 1 . (40)

From (24) we see that both (36) and (40) can be satisfied if 1l* 1, gDk,,I2  are

small. Then from (39) we have that u(m) is convergent in the norm

u(m ) + u (m + -). Therefore (12), (11), (13), (14) follow from

(38), (29), (32), (33) and (24).

-8- i



4.,

In (30) and (31), letting m + =, we then have that

lll(u-w)(t+6t) - (u-w)(t)Ip+1 t = o(Ijul -1 )IIlu(t+6t) - u(t) 11p+i,t

+ o((6t)lluMPll
p+1,t (41)

lll(u-w)(t+6t) - (u-w)(t)1 2, = o( l lull p1,) Illu(t+6t) - u(t) l12

2,t p+i,t p+1,t

+ 0((2t) 2 )M11U 2p,

,((6t) p+l,t (42)

And we have

t+dt t+6t
w(t + 6t) - w(t) = f w (s)ds = -i f Aw(s)ds

t t

Combining the above equation with (26) we have

IIw(t + 6t) - w(t)lllq = 0(6t), (q ) 2) (43)

It follows from (41), (42) and (43) that H1ju(t + 6t) - u(t) ljl = 0(6t),p+l,t

11 ut + 6t) - u(t)j1I 2,t =06t)

If v satisfies (9), then

T
(m) t=T ( (m)(

i(u v)It=0 + f CU ivt + tv)dt = (F(u-),v) (44)
0

Equation (10) follows from (44) by letting m + .

Consider now the uniqueness of the weak solution. Let u, u + U be two

solutions C(L2 (Rn),R+) satisfying (2), (10). We have

Ult=o = 0, (45)

T T
i(U(T),v(T)) + f (U,ivt + Av)dt = f (F(u + U) - F(u),v)dt (46)

0 0

-9-



Taking v -U in (46) (see appendix) and then taking the imaginary part, we

have

1 2 T
R IU(T)112 , Im f (F(u + U) - F(u),U)dx

T 2 T2
4 max lF'(u + 8U)l f IIUt)II dt - K 27 f HU(t)I dt
0<8<1 ,U,U 00

Hence U(t) -0

Thus, the proof of Theorem 1 is completed.

Theorem 2 (decay property). Let u(x,t) be the weak solution of Theorem

1. There is a unique solution u+ of the linearized equation corresponding to

(1), i.e. (15), such that

Iu(x,t) - u +(x't)lI 2 + 0. (47)
as t + +OD

Proof: We define

u= u(t) + fwR(t-s)F(S))ds .(48)

t
We wish to prove that the above integral is absolutely convergent in 1

When n -1 ,by (12), (13) we have

- -(p-i )mirxO- £2
IIF(u(s))l 12 K II lu(s)I i2p 1i K lu(s) ~pII~usIp K S 2 2' 2

2 28 1 29 p+l OD)10  30if ___________(49)

When p > 3, we have p-i > 2 and when p < 3, we have (-)2) > 4 by (5),

hence in both cases we have

IIF(u(s))II 2 =O(S- 1-) hr > 0) (50)

When n > 2, by (12), (14) we have

28 ~u(s)!I 2 1uSl2 < K uU(s)II a Iu(s)R 2p-a 4 K S (51)2 21 31 p+l 2n 32
n-2+2E

where

1-n-2+2E
cx= n - 2p(l-e) -n(p-1) (2

1-I n-2+2E n(p-1) (2

p+1 2n 1- -2(p+1)

-10-



Sn(p-1) + (2p-a)[-e + min(ln( P n  
- I))] (53)

When n(pn -)>1 or equivalently,n+2-2E:

p > (1 + !)(1 + 2-2c) (54)
n n

it follows from (5) that

= 2p(i-c) - n - 2p(l-e) - (2p(1-e) n(p-1)]
-2(p+1)

(55)

= n(p-1) > 2(1 + - ) > 2
p

when

p < (1 + -)(1 + 2-2) (56)

we have

21) n2+4 2_ 2(2(p+1)(1-:)-n(p-1)(6-2) = np(p-) - + n 2n-4-(n -2n+4)p + O(e)
(57)

2 3 2 2S[np(p-1)-2(p+1)] n2+4 + n3-2n2 + )[1 + 22) + (n-2) + 0(C)n+'-"' n+2 [(1+ [1+ - -p]+ - +O)•
nn+2 n+2 nn n+2

The right hand side of (57) is positive when c is small. Using (5), (56) for

n > 2 , we see that 8 > 2 . Combining this with (55), (51), we have (50) for

the case n > 2.

Therefore

lu +(t) - u(t)l 12 < f' IIF(u(s))II2 ds + 0 (t +
t

i.e. (47) is satisfied.

The solution of (1), (2) can be written in the form

u(t) = R(t)4 + ftR(t-s)F(u(s))ds
0

Therefore, we have

u (t) = R(t)4 + fJ R(t-s)F(u(s))ds . (58)
+

0
The right hand side of (5R) is a solution of (15).

Theorem 2 is thus proved.

~-11-



We now study the regularity of the solution of (1), (2). The result is given

in the following theorem.

Theorem 3. Suppose that F(J)(u) = O(lulP 'j) for each nonnegative integer

j (p. Then we have that

(i) If n = 1, xx exists or if n = 2 , p ) 3 , D x exists or if

6
n = 3 , p > 4 , D x exists, then the weak solution of Theorem 1 is a classical

solution.

(ii) If n = 2,3 or if n = 4,5 and p ) 2 , then D 2u , ut E
x

2n

L2(R n ) n L n-2+2(R) for every t ) 0 , and u satisfies (1) almost

everywhere, and D 2u , ut  satisfy inequality (11)-(14) for some constants K1 ,x

K2 , K3 and K4  2n

(iii) If Dxu E L2 (Rn) n L - 2+  (R) for every t ) 0 , then

i(u(s),v(s))lts + ft[(u(s),iv (s)) -(grad u, grad v)lds = ft(F(u(s),v(s))ds

for every v with v, vt, D2 v E C(L 2(R n),R+ ). Moreover D satifies

inequality (11)-(14) for some constants K,1K2 ,K3 and K4

Proof: Differentiating (18) and estimating by the same method as in (28), (29),

(32), (33), we have

DWiVip-1  ItIID VII (59)

IIIDWI K 311IVII 1 1,tDV111 (60)
x 2,t 34 P+1Vt x p+1t

-12-
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I I ID xWI I.

p- 1 1 1 1Z/ 1 (-2)(p+ 1)
K35 lllvllll p IIID Villp ]P-1 [I i i lP 111 D Vl ] -35 l2,t x 2,t  [lllvlxl 11 I! +1 , 1+1 ,t-

(1 + t)2 ( = 1) (61)

p-1 1 1 pn

1wD l il2l K3 6 [ I 2PtlIDiVll i i, ]p_- 2 +2- 2e

n-2+2c

[ilivili 111D VIl 1  1 n 1) ( -min(1,n( n+2-2c
p+l,t xlp+l't

(n ) 2)

(62)

xx p+1,t Wil[ JIVI vii lD.VIl *1t I I p-2 111D Vi 12

htID Wil K3t +11 Itl i+x v  p+1,t

(n 1, p > 2).

(63)

And we have three additional similar inequalities.

When p > 2, l llwlll is small enough and 1 I1D will,
p+l' x p+,

1iD2wllllt exist, from (59), (63) we deduce that DxU(m), D2u(m) areIix

uniformly bounded in the norm 1I 1+ .  Since they are weak convergent, by the

Banach-Saks theorem, Dxu, D2u exist for All t , or u E W + (R) for all

t 0,and

SIDx ulp+1 < K 38(1+t) 2 ID 2 ul pO 4 K 39(1+t) 2(p+I)

2i.e. DxU, D u satisfy inequality of type (12). It is also easy to deduce that

they also satisfy ineaualities of the type (11), (13), (14). Hence (ii) is

proved.

By the same process and with the help of the Sobolev imbedding theorem, (i)

and (iii) can also be proved straightforward.

S-13-



APPENDIX

We cannot take v = U in (45) directly because U is not smooth. However,

we can proceed as follows.

Let j(x) be a mollifier, i.e. satisfying the following conditions:

W j W C C0  (x E (11 f n j(x)dx 1

(iii) j(x) j(x,X) J( ) = ([xf )

(iv) j(x) is an even function of x ; (v) j(x) = O(X-n ),Dj(x) = O(X'n-

Similary let k(t) be a mollifier also, with (iii) changes to k(t) E k(-) = 0
11

(its ) ). Define U(x,t) = 0 (t < 0) , then because of U(x,0) - 0, we have

U(x,t) E (e),R)).

Take v(x,t) = f U(y,T))j(x-y)k(t-T)dydT in (46), and then take imaginal

part, let X, P + 0 , we have (denote ReU = Ul, Im U U2 )

HU(T)II 2 + lim 11 + lim 12 = Im fT(F(u+U) F(u),4)dt
X+O W+0 0

where

Sdt f 'x j(x-y)[U1Y't)U2(xt) - U1 (xt)U2 (y t lldxdy = 0

RnxRn

(because of the integrand is an odd function of x,y)

12 = an dx fTdt ft ,[1 (xt)U 1(x,T) + U2 (xt)U2 (x,T)lkt (t-r)dT
0 t-

fn dx(IT at fT+'dT + f'dt f0dr)tUI(xt)U (xT) +
T-1, T 0 -t

+ U2 (xt)U2 (x,T)lk t(t-T)

(because of the integrand is an odd function of t,T)

= T(T)1 2 fT at T+pX t-") +() max U(t) 2 2 - -IU(t),2 + o(1)
T-w T 0(t4T+U

Hence we have

Iu - F(u),U)dx

0

-14-
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